Elimination of Intermediate Species in Multiscale Stochastic Reaction Networks

نویسندگان

  • Daniele Cappelletti
  • Carsten Wiuf
چکیده

We study networks of biochemical reactions modelled by continuous-time Markov processes. Such networks typically contain many molecular species and reactions and are hard to study analytically as well as by simulation. Particularly, we are interested in reaction networks with intermediate species such as the substrate-enzyme complex in the Michaelis-Menten mechanism. These species are virtually in all real-world networks, they are typically short-lived, degraded at a fast rate and hard to observe experimentally. We provide conditions under which the Markov process of a multiscale reaction network with intermediate species is approximated in finite dimensional distribution by the Markov process of a simpler reduced reaction network without intermediate species. We do so by embedding the Markov processes into a one-parameter family of processes, where reaction rates and species abundances are scaled in the parameter. Further, we show that there are close links between these stochastic models and deterministic ODE models of the same networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniform Approximation of Solutions by Elimination of Intermediate Species in Deterministic Reaction Networks

Chemical reactions often proceed through the formation and the consumption of intermediate species. An example is the creation and subsequent degradation of the substrate-enzyme complexes in an enzymatic reaction. In this paper we provide a setting, based on ordinary differential equations, in which the presence of intermediate species has little effect on the overall dynamics of a biological s...

متن کامل

Reduction for Stochastic Biochemical Reaction Networks with Multiscale Conservations

Biochemical reaction networks frequently consist of species evolving on multiple timescales. Stochastic simulations of such networks are often computationally challenging and therefore various methods have been developed to obtain sensible stochastic approximations on the timescale of interest. One of the rigorous and popular approaches is the multiscale approximation method for continuous time...

متن کامل

Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation

Biochemical reaction networks (BRNs) in a cell frequently consist of reactions with disparate timescales. The stochastic simulations of such multiscale BRNs are prohibitively slow due to high computational cost for the simulations of fast reactions. One way to resolve this problem uses the fact that fast species regulated by fast reactions quickly equilibrate to their stationary distribution wh...

متن کامل

Ju l 2 00 5 Asymptotic analysis of multiscale approximations to reaction networks ∗

A reaction network is a chemical system involving multiple reactions and chemical species. Stochastic models of such networks treat the system as a continuous time Markov chain on the number of molecules of each species with reactions as possible transitions of the chain. In many cases of biological interest some of the chemical species in the network are present in much greater abundance than ...

متن کامل

Permutation, Multiscale and Modified Multiscale Entropies a Natural Complexity for Low-High Infection Level Intracellular Viral Reaction Kinetics

Kinetics Monte Carlo simulation has been done for solving Master equation about dynamics of intracellular viral reaction kinetics. Scaling relationship between equilibrium time and initial population of template has been founded as power low, ( ) b eq time f N aN  , where N , ( ) eq time f N are the number of initial population of template species , equilibrium time, a = 274.2, b = 0.1378 resp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014